Catalyzing Innovative Research for Circular Use of Long-Lived Advanced Rechargeables (CIRCULAR)
Agency Description: The Advanced Research Projects Agency Energy (ARPA-E), an organization within the Department of Energy (DOE), is chartered by Congress in the America COMPETES Act of 2007 (P.L. 110-69), as amended by the America COMPETES Reauthorization Act of 2010 (P.L. 111-358), as further amended by the Energy Act of 2020 (P.L. 116-260): (A) to enhance the economic and energy security of the United States through the development of energy technologies that (i) reduce imports of energy from foreign sources; (ii) reduce energy-related emissions, including greenhouse gases; (iii) improve the energy efficiency of all economic sectors; (iv) provide transformative solutions to improve the management, clean-up, and disposal of radioactive waste and spent nuclear fuel; and (v) improve the resilience, reliability, and security of infrastructure to produce, deliver, and store energy; and (B) to ensure that the United States maintains a technological lead in developing and deploying advanced energy technologies. ARPA-E issues this Funding Opportunity Announcement (FOA) under its authorizing statute codified at 42 U.S.C. 16538. The FOA and any cooperative agreements or grants made under this FOA are subject to 2 C.F.R. Part 200 as supplemented by 2 C.F.R. Part 910. ARPA-E funds research on, and the development of, transformative science and technology solutions to address the energy and environmental missions of the Department. The agency focuses on technologies that can be meaningfully advanced with a modest investment over a defined period of time in order to catalyze the translation from scientific discovery to early-stage technology. For the latest news and information about ARPA-E, its programs and the research projects currently supported, see: http://arpa-e.energy.gov/. ARPA-E funds transformational research. Existing energy technologies generally progress on established learning curves where refinements to a technology and the economies of scale that accrue as manufacturing and distribution develop drive improvements to the cost/performance metric in a gradual fashion. This continual improvement of a technology is important to its increased commercial deployment and is appropriately the focus of the private sector or the applied technology offices within DOE. In contrast, ARPA-E supports transformative research that has the potential to create fundamentally new learning curves. ARPA-E technology projects typically start with cost/performance estimates well above the level of an incumbent technology. Given the high risk inherent in these projects, many will fail to progress, but some may succeed in generating a new learning curve with a projected cost/performance metric that is significantly better than that of the incumbent technology. ARPA-E funds technology with the potential to be disruptive in the marketplace. The mere creation of a new learning curve does not ensure market penetration. Rather, the ultimate value of a technology is determined by the marketplace, and impactful technologies ultimately become disruptive that is, they are widely adopted and displace existing technologies from the marketplace or create entirely new markets. ARPA-E understands that definitive proof of market disruption takes time, particularly for energy technologies. Therefore, ARPA-E funds the development of technologies that, if technically successful, have clear disruptive potential, e.g., by demonstrating capability for manufacturing at competitive cost and deployment at scale. ARPA-E funds applied research and development. The Office of Management and Budget defines applied research as an original investigation undertaken in order to acquire new knowledgedirected primarily towards a specific practical aim or objective and defines experimental development as creative and systematic work, drawing on knowledge gained from research and practical experience, which is directed at producing new products or processes or improving existing products or processes. Applicants interested in receiving financial assistance for basic research (defined by the Office of Management and Budget as experimental or theoretical work undertaken primarily to acquire new knowledge of the underlying foundations of phenomena and observable facts) should contact the DOEs Office of Science (http://science.energy.gov/). Office of Science national scientific user facilities (http://science.energy.gov/user-facilities/) are open to all researchers, including ARPA-E Applicants and awardees. These facilities provide advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nanoworld, the environment, and the atmosphere. Projects focused on early-stage R for the improvement of technology along defined roadmaps may be more appropriate for support through the DOE applied energy offices including: the Office of Energy Efficiency and Renewable Energy (http://www.eere.energy.gov/), the Office of Fossil Energy and Carbon Management (https://www.energy.gov/fecm/office-fossil-energy-and-carbon-management), the Office of Nuclear Energy (http://www.energy.gov/ne/office-nuclear-energy), and the Office of Electricity (https://www.energy.gov/oe/office-electricity). FOA Description: According to the U.S. Environmental Protection Agency (EPA), a circular economy refers to an economy that uses a systems-focused approach and involves industrial processes and economic activities that are restorative or regenerative by design, enables resources used in such processes and activities to maintain their highest value for as long as possible, and aims for the elimination of waste through the superior design of materials, products, and systems. Further, a circular economy reduces material use, redesigns materials, products, and services to be less resource intensive, and recaptures waste as a resource to manufacture new materials and products. Successfully achieving a circular economy requires implementing the above principles to the supply chains of numerous products. Specifically, creating a circular EV battery supply chain focuses on optimizing the full vehicle life cycle. Thus, the emphasis must shift from production and sales within an ownership model to a model focusing on customers mobility needs and access in the form of leasing, as it exists today, vehicle-on-demand (e.g., Zipcar), and mobility-on-demand (e.g., robotaxis). These different business models may coexist but will require increasing collaboration and transparency among different actors, while costs and revenues will be distributed across the supply chain. A circular supply chain offers new revenue streams and business opportunities by providing services to maximize EVs lifetime performance through: Enhancing regular predictive maintenance; Repairing and remanufacturing of battery modules and packs; Improving the reuse and recovery of EOL parts and materials; and Minimizing carbon footprint and maximizing resource efficiency. A circular supply chain also offers opportunities to reduce production and operating costs by: Improving the quality and stability of critical minerals supply chains through cell regeneration, reuse, and recycling; Facilitating rework, reuse, repair, and remanufacture of batteries through modular designs, reversible manufacturing materials and methods; and Reducing asset costs per unit amount of energy delivered owing to the retention of the embedded manufacturing value of batteries, their prolonged lifetime, and the extended use of EVs. The overarching goal of the CIRCULAR program is to successfully translate the above definition of a circular economy to the domestic EV battery supply chain by supporting the development of innovative solutions that can overcome both the technological and economic barriers to broad commercial adoption. CIRCULAR acknowledges that simultaneous advancements in multiple technological domains may be required to accomplish this ambitious objective. Therefore, the program is intentionally structured into four technology development categories designed to converge towards the creation of a domestic circular supply chain for EV batteries. The CIRCULAR program recognizes that conventional recycling is not the only, nor primary, pathway to closing the supply chain loop. Therefore, the primary objective of this program is to catalyze the creation of a circular EV battery supply chain in North America. The program will support the development and deployment of foundational technologies capable of maintaining materials and products in circulation at their highest level of performance and safety for as long as possible. Achieving this goal will directly impact ARPA-E mission areas as follows: Decrease Energy-Related Imports: The CIRCULAR program aims to reduce the import of critical battery materials, cells, packs, and EVs by establishing new supply chain loops within the U.S. Currently, individual steps in the battery supply chain (mining, material processing, cell component assembly, battery cell manufacturing, and recycling) are concentrated mostly outside of the U.S. Reduce Emissions: The CIRCULAR program aims to decrease the domestic energy burden and carbon footprint of the EV battery supply chain by extending the service life of battery cells and packs and by maintaining manufacturing value to the greatest extent possible through regeneration, repair, reuse, and remanufacture. The program will also reduce emissions associated with battery recycling by minimizing the amount of waste and by recycling only pack components that have reached their EOL. Improve Energy Efficiency: The CIRCULAR program aims to minimize energy and material consumption within the battery supply chain and to exploit opportunities to improve energy efficiency through innovative battery design, material regeneration, and/or manufacturing strategies. According to the U.S. Environmental Protection Agency (EPA), a circular economy refers to an economy that uses a systems-focused approach and involves industrial processes and economic activities that are restorative or regenerative by design, enables resources used in such processes and activities to maintain their highest value for as long as possible, and aims for the elimination of waste through the superior design of materials, products, and systems. Further, a circular economy reduces material use, redesigns materials, products, and services to be less resource intensive, and recaptures waste as a resource to manufacture new materials and products. Successfully achieving a circular economy requires implementing the above principles to the supply chains of numerous products. Specifically, creating a circular EV battery supply chain focuses on optimizing the full vehicle life cycle. Thus, the emphasis must shift from production and sales within an ownership model to a model focusing on customers mobility needs and access in the form of leasing, as it exists today, vehicle-on-demand (e.g., Zipcar), and mobility-on-demand (e.g., robotaxis). These different business models may coexist but will require increasing collaboration and transparency among different actors, while costs and revenues will be distributed across the supply chain. A circular supply chain offers new revenue streams and business opportunities22 by providing services to maximize EVs lifetime performance through: Enhancing regular predictive maintenance; Repairing and remanufacturing of battery modules and packs; Improving the reuse and recovery of EOL parts and materials; and Minimizing carbon footprint and maximizing resource efficiency. A circular supply chain also offers opportunities to reduce production and operating costs by: Improving the quality and stability of critical minerals supply chains through cell regeneration, reuse, and recycling; Facilitating rework, reuse, repair, and remanufacture of batteries through modular designs, reversible manufacturing materials and methods; and Reducing asset costs per unit amount of energy delivered owing to the retention of the embedded manufacturing value of batteries, their prolonged lifetime, and the extended use of EVs. To view the FOA in its entirety, please visit https://arpa-e-foa.energy.gov.
Award Range
$500,000 - $5,000,000
Total Program Funding
$30,000,000
Number of Awards
Not specified
Matching Requirement
Yes - Yes
Eligible Applicants
Additional Requirements
A. ELIGIBLE APPLICANTS This FOA is open to U.S. universities, national laboratories, industry and individuals. 1. INDIVIDUALS U.S. citizens or permanent residents may apply for funding in their individual capacity as a Standalone Applicant,26 as the lead for a Project Team,27 or as a member of a Project Team. However, ARPA-E will only award funding to an entity formed by the Applicant. 2. DOMESTIC ENTITIES For-profit entities(which includes large businesses and small businesses), educational institutions28, and nonprofits29 that are incorporated in the United States, including U.S. territories, are eligible to apply for funding as a Standalone Applicant, as the lead organization for a Project Team, or as a member of a Project Team. FFRDCs/DOE Labs are eligible to apply for funding as the lead organization for a Project Team or as a member of a Project Team that includes institutions of higher education, companies, research foundations, or trade and industry research collaborations, but not as a Standalone Applicant. State, local, and tribal government entities are eligible to apply for funding as a member of a Project Team, but not as a Standalone Applicant or as the lead organization for a Project Team. Federal agencies and instrumentalities (other than DOE) are eligible to apply for funding as a member of a Project Team, but not as a Standalone Applicant or as the lead organization for a Project Team. 3. FOREIGN ENTITIES Foreign entities, whether for-profit or otherwise, are eligible to apply for funding as Standalone Applicants, as the lead organization for a Project Team, or as a member of a Project Team. Foreign entities must designate in the Full Application a subsidiary or affiliate incorporated (or otherwise formed or to be formed) under the laws of a State or territory of the United States to receive funding. The Full Application must state the nature of the corporate relationship between the foreign entity and domestic subsidiary or affiliate. All work under the ARPA-E award must be performed in the United States. The Applicant may request a waiver of this requirement in the Business Assurances & Disclosures Form, which is submitted with the Full Application and can be found at https://arpa-e-foa.energy.gov/ (see “View Template Application Documents”). Refer to the Business Assurances & Disclosures Form for guidance on the content and form of the request. 4. CONSORTIUM ENTITIES Consortia, which may include domestic and foreign entities, must designate one member of the consortium as the consortium representative to the Project Team. The consortium representative must be incorporated in the United States. The eligibility of the consortium will be determined by reference to the eligibility of the consortium representative under Section III.A of the FOA. Each consortium must have an internal governance structure and a written set of internal rules. Upon request, the consortium entity must provide a written description of its internal governance structure and its internal rules to the Contracting Officer (ARPA-ECO@hq.doe.gov).
Geographic Eligibility
All
Application Opens
January 31, 2024
Application Closes
May 29, 2024
Grantor
DOE-ARPAE (Advanced Research Projects Agency Energy )
Subscribe to view contact details